Financial Keyword Expansion via Continuous Word Vector Representations
نویسندگان
چکیده
This paper proposes to apply the continuous vector representations of words for discovering keywords from a financial sentiment lexicon. In order to capture more keywords, we also incorporate syntactic information into the Continuous Bag-ofWords (CBOW) model. Experimental results on a task of financial risk prediction using the discovered keywords demonstrate that the proposed approach is good at predicting financial risk.
منابع مشابه
Explicit Suggestion of Query Terms for News Search Using Topic Models and Word Embeddings
This report presents a study on assisting users in building queries to perform real-time searches in a news and social media monitoring system. The system accepts complex queries, and we assist the user by suggesting related keywords or entities. We do this by leveraging two different word representations: (1) probabilistic topic models, and (2) unsupervised word embeddings. We compare the vect...
متن کاملPersonalized speech recognizer with keyword-based personalized lexicon and language model using word vector representations
The popularity of mobile devices offers an ideal platform for personalized recognizers. With data collected from the user, the personalized recognizer with better matched acoustic and linguistic characteristics can offer not only better recognition accuracy but also less computational time. In this paper, we propose a scenario that a small data set (500 utterances with annotation) can be collec...
متن کاملA Word-spotting Hypothesis Testing for Accepting/Rejecting Continuous Speech Recognition Output
The word rejection problem in speech recognition is formulated in a framework of word-spotting, where a spotted word is verified through a binary, acceptance/rejection decision. A generalized word posterior probability (GWPP), used as the sole confidence measure, is computed in a word graph, via the forward-backward algorithm or in an N-best list, using string likelihoods. The GWPP is further e...
متن کاملبهبود کارایی سیستم کاوشگر کلمات تلفنی با استفاده از نرمالیزاسیون امتیاز اطمینان مبتنی بر روش برنامهریزی خطی
Conventional word spotting systems determine hypothesized keywords and their confidence score using a speech recognizer. Acceptance or rejection of these keywords is intended based on comparison of their scores with a specific threshold. It has been proved that confidence score prepared by recognizer is highly dependent on sub-word structure of each keyword. So comparing assigned scores to keyw...
متن کاملDeriving Adjectival Scales from Continuous Space Word Representations
Continuous space word representations extracted from neural network language models have been used effectively for natural language processing, but until recently it was not clear whether the spatial relationships of such representations were interpretable. Mikolov et al. (2013) show that these representations do capture syntactic and semantic regularities. Here, we push the interpretation of c...
متن کامل